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METHOD OF AVERAGING IN THE PROBLEMS OF STABILITY OF ELASTIC PLATES 

POSSESSING FINE PERIODIC STRUCTURE* 

S.I. 3O~ARCHENKO and L.M. ZUBOV 

Buckling of an elastic plate with mechanical properties inhomogeneous acxoss its 

thickness is studied. The character of the inhomogeneity is described by periodic 
rapidly oscillating functions of the transverse coordinate. The method of averag- 

ing is used to construct an asymptotic to the solution of the problem of stability 
in the case when the period of the inhomogeneity oscillations tends to zero. An 

averaged system of differential equations is obtained in the case of a homogeneous 
(affine) subcritical deformation, separately, for the case of a compressible and an 
incompressible materials. The system is used fox determining, in the given approx- 
imation, the bifurcation values of the load parameters. The general theory is il- 

lustrated by an example of computing the stability of a rectangular plate uniformly 
compressed in its plane, with the plate made of a resin-like incompressible one- 
constant material, the modulus of elasticity of which is a rapidly oscillating func- 
tion of the transverse coordinate. The results obtained using the method of averag- 
ing are compared, for a thin plate, with those of the buckling theory based on the 
Kirchhoff hypothesis. 

1. Let us consider an elastic plate bounded in the undeformed state by the planes .rQ = 
tfh. We assume the plate material to be orthotropic (in particular isotropic), and the .r3 
axis lies in one of the material symmetry planes. Elastic properties of the material are 
assumed homogeneous with respect to the Cartesian x1. x2 coordinates counted on the middle 
surface of the plate, and inhomogeneous along the transverse coordinate x8. This means that 
the specific potential energy of deformation W, which is a function of the Cauchy-Green de- 
formation tensor, will depend explicitly on the coordinate .r3. The dependence is assumed to 
be 2he, -periodic. The dimensionless parameter E will be assumed small (the case of a fine 
periodic structure). 

We assume that the elastic body in question is subjected to an initial deformationofthe 
following form: 53 is the principal axis of the deformation tensor, the planes r5 -= const ex- 
perience an affine deformation independent of 23, stresses are absent from these surfaces, 
and the elongation of the fibers orthogonal to the middle surface depends, in general, on 53. 
It can be shown that such a state satisfies the equilibrium equationforanorthotropicmaterial 
inhomogeneous in the direction of the transverse coordinate when the mass forces are zero, by 
virtue of the forces distributed along the side surfaces of the plate. In the case of an in- 
compressible material in the same state of equilibrium, the elongations of the transverse 
fibers are independent of I~,. i.e. the deformation will be homogeneous over the whole body. 

The equation of neutral equilibrium describing buckling of a plate, have the form /l/ 

Here Dis the asymmetric Piola stress tensor, Ris the radius vector of the points of thebody 
in subcritical state, u is the vector of additional displacements, 
Cartesian coordinates unit vectors, 

i, (fi -= 1, 2, 3) are the 

of the body. 
and v is the de1 operator in the undeformed configuration 

An upper dot denotes the perturbations (linear increments) resulting from the 
additional displacements. 

For a compressible material we have /1,2/ 

(1.2) 

Here C,, 
tensor, 

are the subcritical state deformation gradient components, and li is the elasticity 
which in this case is a periodic function of the coordinate sz3 and independent of the 
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coordinates 5, and x2. The boundary conditions on the face planes of the plate cxpressln,~ 
the absence of load in the perturbed state of equilibrium, are written as follows: 

i,. I)' =- 0 when z3 = -&h Il. 3) 

Using the second rank tensors 

A,,,== K,&& (ni, tl= 1, 2,3) 

we can write the equations (1.1) and boundary conditions (1.3) in the form 

4W%W3~ a,u = 0 (1.4j 

A,,+&,u -: 0 when zS = &h (1.5) 

Since the tensors A,,, are independent of x, and x2, equations (1.4) and conditions (1.5) 
admit solutions of the form 

u = f (x3) exp Ii (aq Jr @xz)] (1.6) 

which make it possible to satisfy certain boundary conditionsonthe side surface of the plate. 
The conditions which are of sufficient interest include the conditions of hinged support or 
sliding clamp at the edges of a rectangular plate. 

Substituting (1.6) into (1.4)‘ (1.5) we arrive at a system of ordinary differential equa- 
tions for three functions f, = f.ii (operator d denotes differentiation with respect to 13) 

L&G' + (ia. + $.%J d + d (ia. !. @Aax) - aa&, - jIFA?T - ap (A,% i_ Ag>)]. f = o (I.-i) 

with boundary conditions at I~ =- th 

Setting 

we obtain, in accordance with (1.7) 

df = - (A&‘l.P.f +- (A3Ji.g 

dg=(B.(A,,)-‘.P- Q).f-B.(A33)-i.g 

P = iaA,l 7 i@ABL; B = iaA,s + @AS3 

Q = - aZAn - B2Am - 4 (Ax + An) 

(1.9) 

Using (1.9) we can write the system of equations (1.7) as follows (A is a matrix with tensor 
elements) 

~~hil=~~.libl il. 10) 
- (A33)ri p, 

‘= B.(A33)-L.P-Q, /I 

(&d-1 
-B.(A# I 

We solve the problem of stability of a plate with fine periodic structureusingthemethod 
of averaging /3-6/. Setting ~=E-~Q, we seek the solution of (l'.lO) in the form of a power 

series 

g (53, Y) = x ek) (Q> Y) 2 
k=o 

where f(*)(.~, y), @(z3, y) are 2h -periodic functions of y. The base unknowns in the platebuck- 

ling problem are those values of the load parameters (i.e. the parameters determining the sub- 

critical state), for which the system of equations (1.7) with boundary conditions (1.8) has 
a nontrivial solution. The unknown critical values of the load parameters must alsobesought 
in the form of a power series in terms of the dimensionless period 8. It is for this reason 

that the coefficients of the system (1.7) dependent on the load parameters will appear in the 
form of series 

By virtue of the obvious relation 
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-&f(x3,y) =-$ + E-1: 
3 

the differentiation operator is written in the form 

d = a f 6’ alay, a = alas, 
Taking (1.13) into account, we write the system (1.10) in the form 

(1.13) 

(1.14) 

Substituting the expansions (1.11) and (1.12) into (1.14), we equate to zero, one after the 

other, the coefficients accompanying like powers of a. Equating to zero the coefficients 

of E-1 we obtain 
a,fm = 0, a,@ = 0 

and from this follows f@)(%, y) = f(O) (53), g(O) (53, y) = g(O) (x3). This means that the principal term 

of the expansion (1.11) is not a rapidly oscillating function, but represents a component of 

the solution of the stability problem, varying slowly across the thickness of the plate. The 

coefficient of EO yields the equations 

Averaging the system (1.15), we arrive at a system of equations inf(a).gco) 

(1.15) 

(1.16) 

- ((A$?$‘. p(O)) , ((A@-‘) 
( B(“) . (A$)-‘. p(O) _ Q(O)> , - (B’“‘.(A$))-‘) R 

h 

<cp (~3. Y> = & 5 ‘P (~3, Y) dy 
--h 

Here and henceforth the angle brackets will denote averaging over Y. The system (1.16) can 

be written in the form (E is a unit tensor) 

(1.17) 

h(O) = _ ((AZ)-‘. p(“). f(O) + ((A&‘) .g 

v = ((A$)-‘) . ( (J$o’. (A$))-1 . p’“‘) _ ( Q(O)) - 

(B’o’_ (A$)-‘). ((A!$)-‘)-‘. ((A$-’ .P”‘)) 
w = _ ((A%)-‘.@“) _ ((A$&-‘).(B’O’.(A$)-‘) ((A$)-‘)-’ 

Eliminating from (1.17) the vector h(O), we obtain the following expression 

a+") - \I'.@) _ v.f(O) =o 

The boundary conditions for CW are obtained from (1.8) and have the form 

(0) (0) (0) (A,,8 + iaA,, + $A,,) .f@) = 0 when 53=&h 

for the vector f(O): 

(1.18) 

(1.19) 

The averaged system of equations (1.18) and boundary conditions (1.19) are used to obtain the 

principal term of the asymptotics, as E- 0, of the critical load, and of the formofelastic 
plate loss of stability. The approximation f(O) in question is the more accurate, the finer 
the structure of the inhomogeneity, i.e. the larger the number of the inhomogeneity periods 
accommodated within the plate thickness. 

2. In the case of an incompressible material the linearized Piola stress tensor has the 

form 

D' = K . . (VU)= + r (C-l)T (2.1) 

where C is the deformation gradient of the initial deformed state of the plate, and r is an 

unknown function of the coordinates the supplementary equation for which is represented, to- 

gether with the equations of equilibrium (l-l), by the linearized condition of incompressib- 
ility /l/ 
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C-l. .Ou=,S,,~ = 0: ,\‘,,=i,.C-Li,, 
n i,,‘, -: 

Substituting (2.1) into (1.1) we obtain 

where U, are the components of the displacement vector andS,,,,, are the components ofthetensor 
c-1 . Equations (2.2) and (2.3), together form a system for determining the unknown func- 

tions u, and r. To obtain the boundary conditions, we substitute (2.1) into (1.3). 

jGnts$f , + rS,$ ) i,, =~ 0 when x3= +_h (2.4) 

Setting r := aq/az, anddifferentiating (2.2) withrespectto .rzweobtain, inplaceof (2.2), ~2.3), 
thesystem d",A a U 0 ",nTlX n X (2.5) 

A mnrz -= K,,,,,, L>X z u,, if x < 3. T < 3 

A -A lnnll - mnt, 2 A “17ill 0. v4 : c,. if NL # 3 

.43n(l ~z A 3"fd S f,,> ilOnll (1 
where the Latin indices assume values from 1 to 3 and the Greek indices the values from 1 to 

4. We supplement the boundary conditions (2.4) with the relations 

SIni, a,, UP, 0 when .J, &/I (2.6) 

derived from (2.2), and write the conditions (2.41, (2.6) in the form 

il. i)L. .I'ITX " x 0 when .I'~ 11~ (2.7) 

We see from (2.5), (2.7) that the system of equations of neutral equilibrium and bound- 

ary conditions for an incompressible material is represented in the form analogous to (1.41, 

(1.5). This implies that we can use the algorithm described in Sect.1. As a result, we ob- 
tain the averaged system of differential equations for the components of the four-dimensional 

vector, and the corresponding boundary conditions. 

3. As an example we consider the problem of bifurcation of equilibrium in a plate uni- 

formly compressed in its plane and made of a highly elastic, isotropic incompressibleBartenev 
- Khazanovich material /7/. The deformation gradient of the subcrrtical state has the form 

C = h (i,i, i- i,i,) !- I.-*i,i,: h = const (3.1) 

The Cauchy stress tensor for the given material is defined by the relation /l/ 

T .= 2@"'-& J?= CT.C (3.21 

Here F is the Finger measure of deformation, IL = ~((~-1~~)is the modulus of elasticity of the 

material, representing a rapidly oscillating functionofthe transverse coordinate, and 0 is 

the pressure in the incompressible body which cannot be determined by the deformation. In the 

subcritical state the quantity U is found from the condition of absence of the normal trans- 

verse stress, and has the following values: 

(5 i)Ll)-2 L (3.3) 

Taking due account of the known /l/ relation CT.D = (detC)1’ , we obtain 

,>.=(C-l)~,T'_(C-')?‘.(Vu)“.(C-')'.T (3.3) 

Using now a formula given in /8/ for a derrvative of the square root of a tensor, from (3.2) 

we find (p = rhp) 
._ 

T'= p((rJ2 - 1)-' [I,I,F'-(F-'il.F' + F'.F-'!2) + (3.5) 
(I12 + I,)~-'/>.F.F-'I. - I,(~-‘/d.F’.F-1 $ F-‘.F’.F-‘/s) + 
F-'.F'.F-'j + ZppE 

F'=(Vu)T .C-j- CT. Vu 

I, z.z 3.-1 + A=, I2 = 2h -r ?.-= 

and from (l.l), (3.1) - (3.5) we obtain the following system of equations of neutral equilibrium: 

~(d&~ tti*(&*uI f Qul) + w%Q + (3.6) 
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P lv” (al*us f d2QL3) Jr Zo%?,%, + co2d,p + $33 @I% + 
@*H + o* w,u, +- p) a&L = 0 

Y = li+; zo* = i + ?a (1 = 1, 2) 

The condition of incompressibility has the form 

y2 (a,u, + Wz) + MS = 0 

and the following boundary conditions must hold at the end faces of the plate: 

a,ui + y2&ua = 0, 28,u, + p = 0 for x3 = *h (1 = 1, 2) 

Setting 

(3.7) 

(3.8) 

(3.9) 

Here 1L@') is the first term of the series h = lb(*) + h(I)& i_ h@)e2 + . . . 3 and Y = (g) <p-') is a para- 
meter characterizing the inhomogeneity of the plate. For the homogeneous plate we havey = 1. 
The general solution of the system (3.9) has the form 

(3.10) 

Y (1 f 2) (1 - M)P; m3 -= QJIw”’ 

dl = ic2z [rn,’ - 2:” (z? - Y (z’ - I))] (~(~))%q-~ (1 = 1, 2) 

When z3 = Ah , the following conditions must hold: 

a$' + iazfp’ = 0, #j’ + $zft) = 0, 2@‘,“’ + f’ = 0 (3.11) 

Substituting (3.10) into (3.11) we obtain the equation for finding %(")' 
The boundary value problem (3.9), ‘(3.11) can be separated into two, mutually independent 

problems. 
Problem A: flW, fJ"), f,(O) are even functions and f$') is an odd function of the coordinate 

%I- 
Problem B: flfo), f,(“), f,(O) are odd functions and fP is an even function of the coordinate 

53. 
Problem A describes the symmetric', and B the antisymmetric, i.e. flexural forms of the loss 
of stability of the plate. The equation for determining ?,W in Problem A has the form 

m, (1 + M) (1 - znr, th (r?l,h) - m, (1 - M) (1 + M) th (m,h) = 0 (3.12) 

and in Problem B 

m~ (I i- M) (* - sfi[) th (m& - mz (1 - M)(1 + zM)x th (m,h) = It (3.13) 

For a homogeneous plate, i.e. whenv = 1, we have (s = {h denotes the relative Plate thick- 
ness) 

(Yt - 3) sh (27s) = 2~s (1 + v') in problem A (3.14) 

(3 - y*) sh (2~s) = 2ys(1 + y2f in problem B (3.15) 

The roots of (3.12)-- (3.15) were found by numerical methods. The results show that the 
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solutions of (3.12) and (3.13) tend monotonously to unity with increasing parameter v.beg~r.-- 
ning with the solutions of (3.14) and (3.151, respectively. At finite values of V andatsmaL1 
or finite values of S the flexural forms of the loss of stability appear before the symmetric. 
forms. When v tends to infinity, i.e. in the case of a strongly rnhomogeneous plate, the 

(3.13) coincide asymptotically and we have 

h(O) E 1 - $ v-1 f O(Y_") 

The dashed lines in the figure depict the dependence of the critical 
deformation e =I--(') on the values of the parameter V, for s =1. 
The curves 1 and 2 are constructed for Problem A and B, respectively. 
It can be shown that if the functions 

u = f (4 exp [i (as, i- P.41, P= f4 6~) 
exp Ii (a.~ $- flzz)l 

satisfy the system (3.6), (3.71, then the expressions 

u =f(G exp ji (it=, f Bzzfi P=J~ 1.~) exp [i (+czr, rir &,,J 

and any linear combination of these expressions will also be a solu- 
tion of the system in question. In particular, the following expres- 
sions will be the solutions: 

(3.162 

Let us consider a rectangular plate -a<s,g a, -b,<z,,< b,We put 01 = mnia, fl =nnfb 
(m,n =0,1,2 (...) . Then the solutions (3.16) in Problem B will satisfy the following bound- 

ary conditions at the side surface of the plate: 

( Mst = M, *it; M,=+ i i, . D‘5&13 
-h i 

Consequently the solutions (3.16) will describe the flexural forms of the loss of stability 
in a hinged plate. 

Let us compare the exact solution of the problem of stability with the results of an ap- 
plied theorem of buckling of shells and plates based on the Kirchhoff hypotheses /9/. The 

analysis oftheflexural forms of bifurcation of equilibrium in a compressed plate in the case 
when p is an even function of the transverse coordinate z3 is reduced, within the frameworkof 

this theory, to solving the following equation for the flexure of the middle surface lu(z1.z2) 
of the plate: 

(3.17) 

Linearization of (3.17) relative to the critical deformation e= i--h yields, in the case of 
a homogeneous plate (CL== const), the classical St. Venant equation /lo/ 

1/3hppV”w - V.T.Vw = 0 

Writing m in the form *= ~~,e~p[i(a;r,+~z~~lwe obtain, from (3.17), the following equation 
for determining x : 

J.3 = 1 - 2&&*, 

and this yields 

k = I - -& !&&I1+ 0 (C) (3.18) 

Since Ir(x3) is an even function, the following expansion holds on the interval [O,hj : 
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(3.19) 

From (3.19) we obtain 

PI = a&, Pr = a,h3/3 + 0 (9) 

and in accordance with (3.18) we have 

h=I-+ss’+O(S~, (3.20) 

The solution of (3.13) has an asymptotic representation coinciding with (3.20) with the 

accuracy of up to the terms of order sz. This means that the Kirchhoff theory gives correct 

results in the case of thin plates. 
For the case v= 2 the solid linesinthe figure depict the dependence of the critical 

deformation e on the relative thickness s of the plate. The curves 1 and 2 

the problem A and B; curve 3 is obtained for the flexural forms of the plate 

furcation using the Kirchhoff hypothesis. It is evident that in the case of 

Kirchhoff theory leads to considerable errors. 

correspond to 

equilibrium bi- 

thick plates the 
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